Scientific References

image of DNA strand for scientific references pageAhmetov II, Donnikov AE, Trofimov DY. Actn3 genotype is associated with testosterone levels of athletes. Biol Sport. 2014 Jun; 31(2):105-8.

Ahmetov II, Gavrilov DN, Astratenkova IV, Druzhevskaya AM, Malinin AV, Romanova EE, Rogozkin VA. The association of ACE, ACTN3 and PPARA gene variants with strength phenotypes in middle school-age children. J Physiol Sci. 2013 Jan; 63(1):79-85.

Ahmetov II, Rogozkin VA. Genes, athlete status and training — An overview. Med Sport Sci. 2009; 54:43-71.

Bragazzi NL. Situating Nutri-Ethics at the Junction of Nutrigenomics and Nutriproteomics in Postgenomics Medicine. Curr Pharmacogenomics Person Med. 2013 Jun; 11(2):162-166.

See comment in PubMed Commons belowBurdge GC, Hoile SP, Lillycrop KA. Epigenetics: are there implications for personalised nutrition? Curr Opin Clin Nutr Metab Care. 2012 Sep; 15(5):442-7.

Eynon N, Hanson ED, Lucia A, Houweling PJ, Garton F, North KN, Bishop DJ. Genes for elite power and sprint performance: ACTN3 leads the way. Sports Med. 2013 Sep; 43(9):803-17.

Massidda M, Scorcu M, Calò CM. New genetic model for predicting phenotype traits in sports. Int J Sports Physiol Perform. 2014 May; 9(3):554-60.

Norheim F, Gjelstad IM, Hjorth M, Vinknes KJ, Langleite TM, Holen T, Jensen J, Dalen KT, Karlsen AS, Kielland A, Rustan AC, Drevon CA. Molecular nutrition research: the modern way of performing nutritional science. Nutrients. 2012 Dec 3; 4(12):1898-944.

Shankar S, Kumar D, Srivastava RK. Epigenetic modifications by dietary phytochemicals: implications for personalized nutrition. Pharmacol Ther. 2013 Apr; 138(1):1-17.

Tauriainen E, Storvik M, Finckenberg P, Merasto S, Martonen E, Pilvi TK, Korpela R, Mervaala EM. Skeletal muscle gene expression profile is modified by dietary protein source and calcium during energy restriction. J Nutrigenet Nutrigenomics. 2011; 4(1):49-62.

Zilberman-Schapira G, Chen J, Gerstein M. On sports and genes. Recent Pat DNA Gene Seq. 2012 Dec; 6(3):180-8.

Aagaard P. Training-induced changes in neural function. Exerc Sport Sci Rev. 2003 Apr; 31(2):61-7.

DeAngelis GC, Angelaki DE. Visual–Vestibular Integration for Self-Motion Perception. In: Murray MM, Wallace MT, editors. Source: The Neural Bases of Multisensory Processes. Boca Raton (FL): CRC Press; 2012. Chapter 31.
Frontiers in Neuroscience.

Li M, Larsson L. Force-generating capacity of human myosin isoforms extracted from single muscle fibre segments. J Physiol. 2010 Dec 15; 588(Pt 24):5105-14.

Pinto L, Goard MJ, Estandian D, Xu M, Kwan AC, Lee SH, Harrison TC, Feng G, Dan Y. Fast modulation of visual perception by basal forebrain cholinergic neurons. Nat Neurosci. 2013 Dec; 16(12):1857-63.

Ross A, Leveritt M, Riek S. Neural influences on sprint running: training adaptations and acute responses. Sports Med. 2001; 31(6):409-25.

See comment in PubMed Commons belowTønnessen E, Haugen T, Shalfawi SA. Reaction time aspects of elite sprinters in athletic world championships.

J Strength Cond Res. 2013 Apr; 27(4):885-92.

Wenzel U, Taubert M, Ragert P, Krug J, Villringer A. Functional and structural correlates of motor speed in the cerebellar anterior lobe. PLoS One. 2014 May 6; 9(5):e96871.

Yarrow K, Brown P, Krakauer JW. Inside the brain of an elite athlete: the neural processes that support high achievement in sports. Nat Rev Neurosci. 2009 Aug; 10(8):585-96.

Zeisel SH. Diet-gene interactions underlie metabolic individuality and influence brain development: implications for clinical practice derived from studies on choline metabolism. Ann Nutr Metab. 2012; 60 Suppl 3:19-25.